To Bubble or Not to Bubble Stellar Feedback in Orion and 30 Doradus

Cornelia Pabst IFF-CSIC Madrid / Leiden Observatory March 1, 2022

Cornelia Pabst, IFF-CSIC Madrid

To Bubble or Not to Bubble

Aspects of stellar feedback and star formation:

- kinematics and energetics of star-forming regions
- heating and cooling of the ISM
- transmittance of turbulence into molecular clouds and the dilute ISM
- tracers of star formation in distant galaxies
- regulation of stellar feedback by magnetic fields

Orion versus the Tarantula

Figure 1: 1 O7V star, less than 1 Myr old

Figure 2: 300 O stars and 17 WR stars, 1-2 Myr old

Disruption of the Orion molecular core 1 by wind from the massive star θ^1 Orionis C

C. Pabst¹, R. Higgins², J. R. Goicoechea³, D. Teyssier⁴, O. Berne⁵, E. Chambers⁶, M. Wolfire⁷, S. T. Suri², R. Guesten⁸, J. Stutzki², U. U. Graf², C. Risacher^{8,9} & A. G. G. M. Tielens¹*

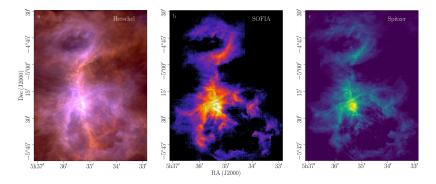


Figure 3: Three infrared images of the Orion Nebula complex (Pabst+2019). a) *Herschel*/PACS and SPIRE dust continuum images (red: SPIRE 250 μ m, green: PACS 160 μ m, blue: PACS 70 μ m). b) Line-integrated [C II] 158 μ m emission, observed by the upGREAT instrument onboard SOFIA. c) *Spitzer*/IRAC 8 μ m image.

Measuring stellar feedback

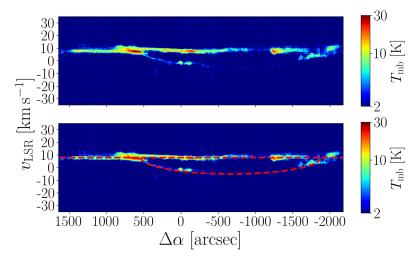


Figure 4: [C II] pv diagram through the Orion Veil shell (Pabst+2019, 2020). The lower panel traces the arc structure for an expansion velocity of $13 \,\mathrm{km \, s^{-1}}$ on a background velocity of $8 \,\mathrm{km \, s^{-1}}$ (red dashed lines).

The starburst region 30 Doradus

Figure 5: Hubble's view of 30 Dor. Right: close-up of R136 in NGC 2070.

The starburst region 30 Doradus

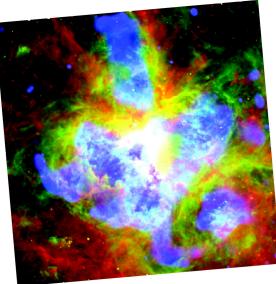
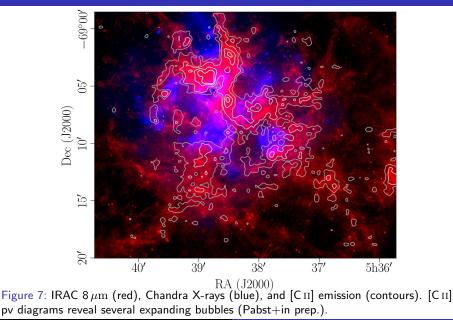



Figure 6: Figure 14 from Townsley+2006; red: IRAC 8 μ m, green: MCELS H α , blue: Chandra X-rays.

Cornelia Pabst, IFF-CSIC Madrid To Bubble or Not to Bubble

The starburst region 30 Doradus

Cornelia Pabst, IFF-CSIC Madrid To Bubble or Not to Bubble

Magnetic fields in 30 Doradus

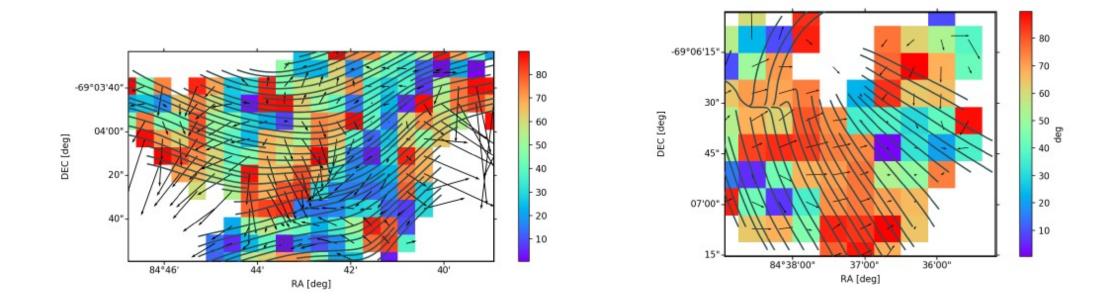


Figure 8: Relative orientation of magnetic field lines and the gradient of the velocity map (arrows. 90 degrees means perpendicular, 0 degrees means parallel.

Magnetic fields in 30 Doradus

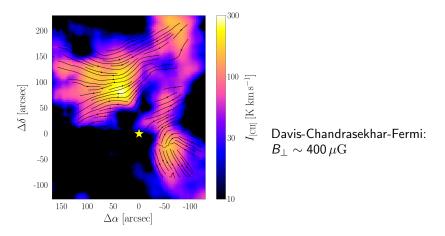


Figure 9: [C II] integrated intensity (upGREAT) with magnetic field lines (HAWC+).

Stellar feedback on different scales

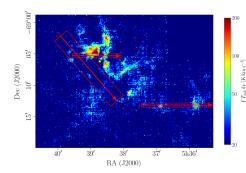
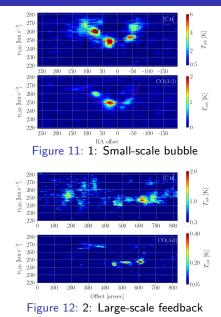
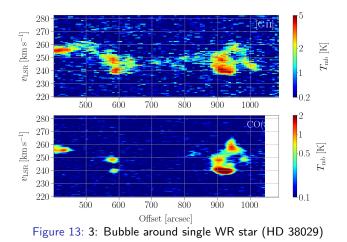




Figure 10: Line-integrated [CII] emission from 30 Doradus

Stellar feedback on different scales

Single massive stars in 30 Doradus have large recognizably expanding bubbles, but R136 does not

Cornelia Pabst, IFF-CSIC Madrid To Bubble or Not to Bubble

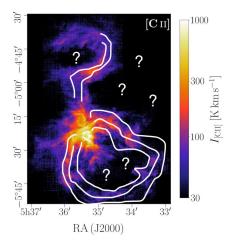
	Orion	30 Dor
age [Myr]	0.2	1-2
wind luminosity [erg s-1]	8x10 ³⁵	2x10 ³⁹
thermal energy of hot plasma [erg]	10 ⁴⁷	10 ⁵²
neutral gas mass $[M_{\odot}]$	1500	~10 ⁵
kinetic energy of neutral gas [erg]	2x10 ⁴⁸	~10 ⁵⁰
mechanical energy input over lifetime of star(s) [erg]	5x10 ⁴⁸	∼10 ⁵³
E _{kin} /(L _w t)	0.5	~10 ⁻³

Where has all the energy gone?

Pressures

Source		NGC 1977	M43	RCW 120	Veil Shell	RCW 49	30 Dor
Plasma	thermal	-	-	7	10	49	18
н	thermal	8	80	4	8	49	5 turbulent: 24
PDR	radiation	0.8	30	1.3	1	26	4
	thermal	9	10	10	3	12	5
	turbulent	0.8	8	60	10	59	960
	magnetic	?	?	?	20	?	1600

in $10^{5}\,K\,cm^{-3}$


(Pabst+2019, 2020; Luisi+2021; Tiwari+2021; Cheng+2021; Chu&Kennicutt 1994)

Magnetic Orion

Figure 14: Magnetic field lines in OMC1 (APOD, Chuss+2019).

Figure 15: Magnetic field lines in the Veil?

- [C II] map of Orion is an incredibly rich data set, many as yet unexplored features
- To explore stellar feedback we need to map large regions at high spectral and spatial resolution efficiently
- [C II] observations of the Orion Nebula reveal a young expanding spherical bubble
- [C II] observations of 30 Doradus show fragmented feedback
- no efficiently driven bubbles around R136, but bubbles around single WR stars